Are you using or considering implementation of a storage hypervisor?

Depending upon what your or somebody else’s definition of a storage hypervisor is, you may or may not be using one or realize it.

If your view of a storage hypervisor is a storage IO optimization technology to address performance and other issues with virtual machines (VMs) and their hypervisors, such as Virsto or ScaleIO along with others, you might be calling those storage hypervisors as opposed to middleware, management tools, drivers, plug-in, shims, accelerators, or optimizers.

IO IO it is off to Storage and IO metrics we go

There are many different types of metrics pertaining to storage and IO that can be grouped into Performance, Availability, Capacity, Economics and Energy (PACE). Every application or workload has some characteristics attribute of Performance, Availability, Capacity, Economics and Energy that can be further broken down into metrics that are more detailed.

SSD options for Virtual (and Physical) Environments Part IV: What type of SSD is best for your needs.

Let us continue to look at what SSD to use for different environments and build off the other parts of this series of articles. Part 1 of this series laid out the basics of nand flash Solid State Devices (SSD) with part II discussing endurance and performance. Part III looked at SSD options for virtual servers, VDI or virtual desktop as well as storage for physical server environments, usage and configuration criteria. So which SSD options are best for which environments?

SSD options for Virtual (and Physical) Environments Part III: What type of SSD is best for you?

Part 1 of this series laid out the basics of nand flash SSD with part II discussing endurance and performance. This part looks at SSD options for virtual servers, vdi or virtual desktop as well as storage for physical server environments, your usage and configuration criteria will have a bearing on what type of SSD solution is best for you.

SSD options for Virtual (and Physical) Environments, Part II: The call to duty, SSD endurance

Let’s continue by taking a look at endurance for storing and retaining data using nand flash SSD. The importance of the first part of this series is to understand the basics of nand flash based SSD in order to make informed decisions on what is the best for your virtual or physical environment. In addition to SLC (high cost, improved duty cycles) and MLC (higher capacity, lower cost), there is also EMLC or Enterprise MLC which is striving for a balance between SLC and MLC characteristics.

SSD options for Virtual (and Physical) Environments: Part I Spinning up to speed on SSD

Solid-state devices (SSDs) are data storage memory (Figure 1) mediums that utilize semiconductor based memoires as opposed to magnetic media found in hard disk drives (HDDs) or magnetic tape. Semiconductor memories include ultra fast volatile dynamic random access memory (DRAM) commonly found as main memory (e.g. RAM) in servers along with and non-volatile memory (NVM) typically NAND flash. Nand flash based SSDs can be found in cameras (as SD cards), cell phones, iPods, and PDAs, as well as in notebooks, net books, laptops, tablets, and workstations. SSDs are also appearing in larger servers, appliances, and storage systems from consumer to enterprise level.